對接焊、搭接焊、填絲焊——焊接術(shù)語的范圍和這個技術(shù)本身一樣廣泛多變。激光焊接和激光釬焊是熱接縫方法中的兩種標(biāo)準(zhǔn)化的接縫工藝。
與傳統(tǒng)的電弧焊接工藝相比,激光束接縫有很多好處:
小區(qū)域內(nèi)選擇性的能量應(yīng)用:降低熱應(yīng)力和減小熱影響區(qū),極低的畸變
接合縫窄、表面平滑:降低甚至消滅再加工
高強(qiáng)度與低焊接體積結(jié)合:焊接后的工件可以經(jīng)受彎曲或者液壓成形
易于集成:可與其他生產(chǎn)操作結(jié)合,例如對準(zhǔn)或者彎曲
接縫只有一邊需要接近
高工藝速度縮短加工時間
特別適用于自動化技術(shù)
良好的程序控制:機(jī)床控制和傳感器系統(tǒng)檢測工藝參數(shù)并保證質(zhì)量
激光束可以不接觸工件表面或者不對工件施加力的情況下產(chǎn)生焊點
圖1 熱傳導(dǎo)焊接中,表面被熔化
激光束可以在金屬表面連接工件或者產(chǎn)生深焊縫,也可以和傳統(tǒng)的焊接方法相結(jié)合或用作釬焊。
1熱傳導(dǎo)焊接
熱傳導(dǎo)焊接中,激光束沿著共同的接縫熔化相配零件,熔融材料流到一起并凝固,產(chǎn)生一個不需要任何額外研磨或精加工的平滑、圓形的焊縫。
圖2 深熔焊產(chǎn)生一個充滿蒸氣的孔,或者叫小孔效應(yīng)
熱傳導(dǎo)焊接深度范圍在僅僅幾十分之一毫米到一毫米。金屬的熱導(dǎo)率限制了最大的焊接深度,焊接點的寬度總是大于它的深度。
圖3 變速器部件的深熔焊
圖4 顯微鏡下觀察到的激光焊接橫截面
如果熱量不能迅速地散去,加工溫度就會上升到氣化溫度以上,金屬蒸氣形成,焊接深度急劇增加,工藝變成了深熔焊。
2深熔焊
深熔焊需要大約 1 MW/cm2 的極高功率密度。激光束熔化金屬的同時產(chǎn)生蒸氣,蒸氣在熔融金屬上施加壓力并部分取代它,同時,材料繼續(xù)熔化,產(chǎn)生一個深、窄、充滿蒸氣的孔,即小孔效應(yīng)。激光束沿著焊縫前進(jìn),小孔隨之移動,熔融金屬環(huán)流小孔并在其軌跡內(nèi)凝固,產(chǎn)生一個深、窄的內(nèi)部結(jié)構(gòu)均勻的焊接,焊接深度可能比焊接寬度的大十倍,達(dá)到25mm 或者更深。
深熔焊的特征在于高效率和快速的焊接速度,熱影響區(qū)很小,畸變可控制在最低限度,常用于需要深熔焊接或者多層材料需要同時焊接的應(yīng)用中。
3活躍氣體和保護(hù)氣體
活躍氣體和保護(hù)氣體在焊接過程中輔助激光束。
活躍氣體用于 CO2 激光器焊接,以防止工件表面形成等離子體云阻礙激光束。
保護(hù)氣體用以保護(hù)焊接表面不受環(huán)境空氣影響,保護(hù)氣體到工件的流動是非湍流的(層流)。
4填充材料
填充材料通常以絲或者粉末添加到要被連接的點上。其作用:
1. 填補(bǔ)過寬或不規(guī)則的縫隙,減少接縫準(zhǔn)備所需的工作量。
2. 填充物以特定形式的成分添加到熔融金屬上從而改變材料的焊接適用性、強(qiáng)度、耐久性和抗腐蝕性等。
5復(fù)合焊接技術(shù)
復(fù)合焊接技術(shù)是指激光焊接和其他焊接方法相結(jié)合的工藝??杉嫒莸墓に囀?MIG(惰性氣體保護(hù)焊)或者 MAG(活性氣體保護(hù)焊)焊接,TIG(鎢極惰性氣體焊接)或者等離子體焊接。復(fù)合焊接技術(shù)比單獨的 MIG 焊接更快、零件變形更少。
6激光釬焊
激光釬焊中,相配零件通過填充材料或者釬料連接在一起。釬料的熔化溫度低于母材的熔化溫度,在釬焊過程中只有釬料被熔化,相配零件僅被加熱。釬料熔化流入到零件之間的缺口并與工件表面結(jié)合(擴(kuò)散結(jié)合)。
釬焊接頭強(qiáng)度和焊料材料一樣,接縫表面平滑清潔,無需精加工,常用于汽車車身加工,比如后備箱蓋或者車頂。
圖5 使用填充焊絲,活躍氣體和保護(hù)氣體的激光焊接
傳感器用于檢測和調(diào)節(jié)某些參數(shù),包括工作距離、激光束在接縫間隙的位置、光學(xué)透鏡調(diào)整角度以及填充材料的數(shù)量,以保證零件加工過程中的焊接質(zhì)量,并且檢測出劣質(zhì)的零件。
1焊縫跟蹤
當(dāng)激光束用來焊接材料中的對接接頭時,追蹤接縫間隙軌跡和正確定位激光束,確保激光束保持在接縫間隙的同一個位置。
2保持監(jiān)視整個過程
可以將傳感器系統(tǒng)結(jié)合來實現(xiàn)對焊接過程更全面的監(jiān)測。包括“焊接前”、“焊接內(nèi)”、“焊接后”傳感器。
焊接前傳感器位于焊點之前追蹤焊縫和定位激光束。焊接中傳感器在焊接中使用照相機(jī)或者二極管檢測焊接過程,基于相機(jī)的系統(tǒng)分析鎖眼和焊接池,采用二極管的系統(tǒng)能夠檢測加工光、熱輻射或者反射激光的強(qiáng)度。焊接后傳感器檢查完成的焊點,確定焊點是否符合質(zhì)量要求。
傳感器依靠程序化的極限值來區(qū)別零件的優(yōu)劣。
激光焊接機(jī)的設(shè)計取決于很多因素,如工件形狀、焊接幾何結(jié)構(gòu)、焊接類型、生產(chǎn)量、生產(chǎn)自動化程度,以及工藝和材料等等。
1人工焊接
小型工件通常采用手動工作站執(zhí)行焊接工作,例如焊接珠寶或者修復(fù)工具。
21D 應(yīng)用
有時候,激光束只需要沿著單一的移動軸焊接。比如使用縫焊接機(jī)或者管焊接系統(tǒng)進(jìn)行管材焊接或者縫焊接。
33D 系統(tǒng)和機(jī)器人
激光束通常連接以立體焊接幾何結(jié)構(gòu)為特征的三維零件。采用五軸基于坐標(biāo)的激光單元和一組可移動的光學(xué)配件。
4掃描振鏡或者遠(yuǎn)程焊接
掃描振鏡在離工件很遠(yuǎn)的距離引導(dǎo)激光束,而在其他焊接方法中,光學(xué)透鏡是在離工件很近的距離引導(dǎo)激光束。
掃描振鏡依靠一個或者兩個可移動的反射鏡,快速定位激光束,使得復(fù)位焊縫之間的光束所需時間接近為0,從而提高產(chǎn)能,適用于生產(chǎn)大量的短焊縫,并可以優(yōu)化焊接順序來保證最小的熱量輸入和畸變。
5遠(yuǎn)程焊接系統(tǒng)
遠(yuǎn)程焊接系統(tǒng)有兩種實現(xiàn)方式。第一種是一個遠(yuǎn)程焊接系統(tǒng)。工件放置在掃描光學(xué)振鏡下工作區(qū)域內(nèi),然后被焊接。在短時間內(nèi)焊接大量零件時,在光學(xué)振鏡下通過機(jī)器連續(xù)不斷地運(yùn)輸零件,這個過程被稱作飛行焊接。
第二種是承載掃描光學(xué)振鏡的機(jī)器人執(zhí)行大的移動量,同時,掃描光學(xué)振鏡保證激光束沿著工件來回移動時的精密定位。機(jī)器控制同步機(jī)器人和掃描光學(xué)透鏡的重疊移動,它測量機(jī)器人幾毫米內(nèi)的精確的空間位置,控制系統(tǒng)將測量的位置與程序路徑對比。如果檢測到偏差,就會通過掃描光學(xué)振鏡進(jìn)行補(bǔ)償控制。
激光焊接工藝開發(fā)了大范圍的應(yīng)用可能性。高質(zhì)量、極小的再加工、低成本效益成為大力推廣激光焊接工藝的有力論據(jù)。未來激光焊接工藝會變成像激光切割那樣成熟。